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Kink shape solutions of the Maxwell-Lorentz system
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In the limit of high amplitude oscillating electromagnetic fields, a sequence of kink antikink shaped optical
waves has been found in the Maxwell's equations coupled to a single Lorentz oscillator and with Kerr
nonlinearity. The individual kinks and antikinks result from a traveling wave assumption and their stability has
been assessed by numerical simulations. For typical physical parameter values the kink width is of the order of
tens of femtoseconds.
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I. INTRODUCTION For the Maxwell's equations coupled to one Lorentz os-
cillator, we show that the oscillating electromagnetic field
Optical pulse propagation in fibers is usually studied usconverges toward a train of traveling kinks and antikinks
ing the nonlinear SchrodingdNLS) equation that is valid  with a period going toward infinity as the oscillation ampli-
for slow envelope dynamics of the pulg]. However, for  tude increases. The individual kinks rise from a plateau of
ultrashort pulses a first principles approach has been praiegative constant electric field to a plateau of positive con-
posed that is based on the vector Maxwell's equationstant electric field of the same absolute value. The antikink
coupled to one or more Lorentz oscillators modeling the in-decreases from a positive plateau to a negative plateau. The
teraction between light and media,3]. The Lorentz oscil- change of the electric field value takes place over a time
lators provide dispersion. For high intensity pulses, the coninterval of the order of tens of femtoseconds in strongly non-
stitutive relation between the displacement current and thénear materials as optical polymel0,11). These kink and
electric field includes a cubic Kerr nonlinearity. antikink solutions have been found by a traveling wave as-
Optical envelope pulses in the nonlinear Maxwell-LorentzSUMPption and their stability is verified by numerical simula-
system can be described by the NLS equation or extendednS: Referenc¢l2] investigates the d|sperS|on. equation of
versions of the NLS equation taking into account higher orine Maxwell-Lorentz system and compares bright and soli-
der dispersion and nonlinearities. In Refd,5] the NLS tary waves of the appropriate NLS equations, for the case of

equation and extended versions of the NLS equation hav Eg:/(\:/sant?\ g{wglt(l)(i,vlﬁzrr cr;ro nggﬂlgzggéesdgg: lﬁgf r éz\éﬁft'?nat'g;

t_)een derived and a comparison between full numerical S.OlulVIaxweII-Lorentz system. However, for the case of quintic
tions of the Maxwell-Lorentz system and the NLS equat'onﬁonlinearity, the vector Maxwell system does exhibit an ini-

show remarkable agreement even for very short pulses with,, collapse similar to the quintic NLS equation, but the

only 3—4 oscillation periods. In the literature not only havecollapse is eventually arrested.

envelope pulses been studied but single humped localized after describing the mode{Sec. 1) we present a phase

pulses can be found in models of the Maxwell's equationspjane analysis of the kink solutiofSec. 1l A followed by

coupled to linear as well as nonlinear oscillatd&-8].  numerical simulations of kink anti-kink pairs that verify their

These pulses are traveling solitary waves with SO|it0n|ikestabi|ity (Sec. Ill). Our summary is given in Sec. IV.

properties and are expected to be found in studies of atomic

physics by means of photoionization leading to intense and Il. MAXWELL-LORENTZ MODEL

nonoscillatory electromagnetic fields. Experimental observa- Consider the propagation of light in media with dispersion

tions of traveling waves in lasers have been reportd®in  and nonlinearity by using Maxwell's equations. Assuming
transverse plane waves propagating inzfais direction we
introduce the electric fielE=(E(z,t),0,0), the magnetic

*Electronic address: M.P.Soerensen@mat.dtu.dk; URL: http:/;ield B=(0,B(z,1),0), anq the displailcement. currerip
Www.mat.dtu.dk =(D(z,1),0,0). The governing Maxwell’s equations become
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the electric field and the polarization through the constitutive dE
equation dé =Y, ©)

D = go[e..E + ® +a|E]’E]. )

, , dY 6av’EY?- wi[(c/v?- e E - aE®)
In the above equatiod denotes the retarded or residual d_: 2 2 3ap?E? . (6)
linear polarization response to an applied electric field and ¢ €= 80"~ Saw
&., is the infinite relative frequency permittivity arising from In order to write the final equation fd as a system of two
instantaneous polarization response. The nonlinear polarizdirst-order ordinary differential equations we have introduced
tion is assumed to be an instantaneous cubic Kerr nonlineax=E’, where the prime denotes differentiation with respect
ity of strengtha. The linear retarded response we shall modeko ¢ For v<c/\e, there exist three stationary solutions
by a Lorentz oscillator, with resonance frequenay, (fixed pointg of the above system and they are
coupled to the electric fielf2]

1 2
PD 9D (E'Y)=(0,0 and (E)Y)= (i—r c_2 - 83,0)- (7)
S Tt i = Buck. 3 Va Vv

In order to access the stability and the phase plane flow pat-
The parametep is the difference between the staticand  tern around these three fixed points, we need to determine
the infinite frequency relative permittivitie=es—¢... The  the eigenvalues of the Jacobian of the functions on the right
residual Raman molecular vibration response can be motand sides of Eqg5) and (6) evaluated at the fixed points.

eled using a similar linear oscillator but coupled to the field|n doing so we find the eigenvaluasof the Jacobian taken
intensity |[E|2. However, in this study we neglect the Raman gt (E,Y)=(0,0) to be

term. The term il describes a linear damping, which plays

a key role in absorption experiments. However, in the limit A= +io /02/02—85 )

of kink-antikink propagation the frequency goes toward zero TN @02

and these nonlinear oscillations are far from resonance. The . ) .

damping effect is to slowly deplete the waves as they propakTom this we learn that the stationary poiBt Y)=(0,0) is a

gate, a situation very much different from linear theory. ~ ¢enter and in th¢E,Y) phase plane we have elliptic circu-

Noninstantaneous response results from inertia, i.e., th&ting solution curves close t&, Y)=(0,0). These solutions

term @y, in Eq. (3). Subscripts denote partial derivatives are marginally stable. At the two other stationary points the

with respect to the subscript variable. In addition we canJacobian possesses identical eigenvalues, which are

have nonlocal effects and wave guiding effects which for _
A=t \”2(00\/

clv? - &g

simplicity are not taken into account in this first approach. 5 5. 9

The Lorentz model describes a change of refractive index (Bes—ex)v -2

and it is added to the background indgsee Eqs(2) and ko the velocity lying in the interval

(3)]. Therefore, negative relative permittivity is not possible.

For numerical examples we shall use the representative 2 1

physical value$2,10,13 cy 36— e, <l < C\_S: (10)
£s=5.25, &,=2.25, we observe that the stationary points with nonvanishing val-

ues ofE in Eq. (7) are hyperbolic fixed points.

m2

wp=4.11x 10 Hz, a=2.7x10"-;.
Vi

(4) IIl. NUMERICAL SIMULATION RESULTS

) _ . Inour numerical simulations we have rescaled the depen-
These parameter values correspond to electronic polarizatiqfunt and independent variables according to
in a highly nonlinear polymer. A resonance frequency of or-

4 . . - _ o k~
der 10* Hz is typical for bounded electrons and the value 2=k3, t=Kf, &E=ki=kGE-7), v=-%,

stated for the third-order nonlinear parametstx'® has K
been reported for a heterocyclic ladder polymer, nonether
polyphenylquinoxalind 10]. Fused silica has a typical non- E(9) = kED
linearity parameter of order 1&m?/V? [5]. ETSD
~~ 1 C £
A. Traveling wave Y()=kyY(§), k=—, kK=—""m—, k= \/:
wq W\ € 3a

As the damping merely weakly depletes the oscillation in
the off resonance case, we shall first neglect the influence of £,
damping. Let us introduce the traveling wave assumption for ky = C\’fg- (11

the electric fieldE(z,t)=E(¢), whereé=z—-vt, and similarly
for the magnetic field, the displacement curret, and®.  The scaled and dimensionless variables are indicated by a
Inserting this solution ansatz into Eq4)—(3) we obtain the tilde. In the scaled coordinates Eq$) and (6) transform
ordinary differential equation system into
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~0.002 FIG. 3. The real part He] (a) and the imaginary pant (b) of
the index of refractiom from Eq.(13) as function of the frequency
-0.003 ratio w/ wg. The normalized damping coefficient 45=0.1.

FIG. 1. Phase plane flow pattern calculated numerically from ~ ~ )
the scaled Eqgs(12), using the parameters in Eq4) and 3  tion, both neag=0 and for|¢ — . The amplitudety, and
=0.6545. width w are determined by matching the approximate tanh-
kink solution to the one obtained numerically from E(2).
~ o -~ ~ The comparison is shown in Fig. 2 where the dashed curve
dE v dy _ Z°EY? - (1/6° - eds..)E+ E¥/3 (17  represents the tanh approximation.

d~§ dé 1-32-72E2 In Fig. 1 the origin is a center point and nearby closed
trajectories are elliptic curves corresponding to linear oscil-

The phase plane flow pattern is shown in Fig. 1, obtainedating solutio'ns. The dispersion. relation for the Iinegrized
numerically by solving Eqs(12). The scaled unstable fixed EdS-(1)—3), including the dampind’, lead to a refractive
points are given byE=\3[(1-72)/32-Ble..]. The upper indexn given by[14]

heteroclinic trajectory connecting the left hyperbolic fixed

point to the right hyperbolic fixed point forms the kinklike n2 = Czk_z —s + B

solution shown in Fig. Zsolid curvg. The antikink results 0?7 1 (wlwy)?-iywlwy
from connecting the right hyperbolic fixed point with the left
one along the lower heteroclinic curve. We stress that th
kinklike solution is not an envelope for an oscillating carrier
wave. Squaring the field gives a wave form which to some expressiony=T"/ wy is a normalized damping. The real part
extent resembles a dark solitary wave. However, due to th f the index of r(gfraction He], is shown a.s function of
absence of the carrier wave it is quite distinct from the usua Jw in Fig. 3a). In Fi é(b) ' how the i ) ;
dark soliton. The existence of the above kink shaped travel‘-"_“’0 In Fg. 3. In 9. we show the Imaginary par
ing wave solution does not imply that it is stable. In order to'_(_lm[n:| of n as fur_1ct|on Ofw/ wo, Which is the absqrpt_lon
assess its stability, we have solved E@S—(3) numerically line. Rather arbitrarily we have chosen0.1. For vanishing

using the scaled variables and by choosing initial conditiongamp'nq tthe s;I)ectrum W'"d$h°VtV a forblt(_:ldenlgap mf ttl;n]e fre-l
which are not exactly equal to the heteroclinic kink solutionU€NCy Interval corresponding to negative siope ot the rea

. - .~ part of nin Fig. 3@).
shown as the solid curve in Fig. 2. By choosifigz,0) We can now investigate the transition from the above lin-

=Adndanti(z-2z,)/w] we start the simulations with an initial - earized case to the nonlinear case by solving Et@. nu-
condition which is a fairly good approximation to the solu- merically. The results are shown in Fig. 4. Usiing0.6545,

the initial conditions(~E(0) ,?(O)):(O ,?0), and increasintf{o,

(13

?—|ere_k is the wave number of the plane wave ansktz
=E,e® Y with w being the frequency oE. In the above

0 O6E the oscillating solutions progressively become more nonlin-
' ear and hence different from the picture in Fig. 3. The oscil-
0.04 lation period increases and the frequency decreases. The fre-
quencies of the oscillations in the three figures aéwg
0.02 =0.930, w,/ wo=0.571, andw./ wy=0.307, respectively, and
3 the resonance frequency of the linearized systemwjs
100 200 300 400 =2.87x 1072 Comparing with Fig. @) it is observed that as
-0.02 the oscillation amplitude increases, the frequency moves
0 04 away from the resonance case closevfpleading to a sub-
: stantial decrease of the absorption. Eventually, the solution
~0.06 turns into a form close to a train of kink-antikink nonlinear

5 B waves. In the phase plane plot this is a solution path follow-
FIG. 2. Solid curve: The kink solutiorE versusé, calculated ing closely the heteroclinic orbits within their closure. This
numerically from the scaled Eqél2). Dashed curve: The approxi- train of nonlinear solitary waves should be easy to obtain by
mation E(£)=Ayntant (£-239.2/w], Agy=5.7336<102 andw increasing the amplitude of an external driving electromag-
=32.32. The parameters are given in E4). and=0.6545. netic field.
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FIG. 5. A traveling kink and antikink wave, forming a square-

like pulse, using the parameter values in Ej. The initial data for

the kink are E(i,o):Akmktanr[(i—zl)/w] where Aujn=5.7336

X 1072, w=32.32,5=0.6545, and;; =400. For the antikink we used

Agin=—5.7336x 1072, w=32.32p=0.6545, and; =800.E, z, andt

in the figure labels refer to the scaled variadieg, andt.

-0.02

-0.04

-0.06,

FIG. 4. Numerical solutions of Eq$12). (a) Oscillating waves
corresponding to the nearly linear case starting fr@t0), Y(0))

~(0,0.001. (b) Initial conditions(E(O),?(0)):(0,0.001 75, (0) A Y, the & derivative of the electric field. From E@1l) this

solution close to a train of kink-antikinks using the initial conditions corresponds to 'a physical .d~ls_tance of 28:. The speeq of
o~ N _ _ the traveling kink wave isv=0.6545 and the associated
(E(0),Y(0))=(0,0.001 774 3B v~:O.6545.E andt in the figure la- physical wave speed becomes (c/ v;w)5:1.3lx 18 m/s
bels refer to the scaled variablEsandt. [see Eq.(11)]. Using the parameter values in E@}), the
change in the kink profile takes place within a time interval
) ) o ) o of about 220 fs, measured as the FWHM for the spatial de-
Figure 5 shows a kink and antikink pair traveling in the jyative of the electric fieldsee Table)L
same direction. The reason for presenting a kink-antikink |n Table | we present two other cases with different non-
pair is due to our use of periodic boundary conditions in theinearity parametea and plateau values of the electric field
numerical scheme, thereby allowing for simulating over longg. The two first lines present results for a nonlinearity pa-
time stretches in a small Spatial area without using adaptiVﬁimeter a representaﬂve of a h|gh|y nonlinear p0|ymer
grid generation. Only pairs of kinks and antikinks can satisfy[10,13. The third line corresponds to fused silica. The width
these boundary conditions. Other types of boundary condiof the kink decreases as the electric field increases and the

tions could easily be imposed to handle single kinks but ithonlinearity increases, which is to be expected.
will require more extensive simulations. Initially the kinks

adjust their shape to the exact solution by shedding off linear
rad|at|0r_1 waves. After a transient perlo_d th_e kinks attain th_e IV. SUMMARY
shape given by the heteroclinic curves in Fig. 1. Our numeri-
cal simulations indicate that the kink shaped optical pulse is

stable The vector Maxwell equations coupled to a single Lorentz

] ] ] . ~ oscillator with instantaneous Kerr nonlinearity possess a kink
In normalized units the kink rises fronE=-5.7336  gnaped traveling wave solution. Numerical simulations of
X102 (in physical units -9.55& 10’ V/m) to E initial conditions perturbed from the exact solution indicate
=+5.7336x 1072 within a space interval of length about that the kink solution is stable. Starting from linear oscillat-
59.3, taking as the full width at half maximutARWHM) of  ing plane waves and increasing the amplitude, the solution

TABLE I. The full width at half maximum ofY for kinks in materials with different nonlinearity param-
etersa and for different electric field strengtis(plateau valug The physical kink velocity is denotedand
the normalized velocity is denotéd The value of the nonlinearity parametarin the first two lines is
representative for a highly nonlinear polymer. In the third line dhealue is representative for fused silica.

a v 7 (normalized E E (normalized FWHM
(m2/V?) (m/s) F (V/m) F (fs)
2.7x1071° 1.31x 108 0.6545 9.56< 107 5.73%x 1072 220

2.7x1071° 1.20x 108 0.60 1.92x 10° 1.15 15.2

1.03x 10722 1.30x 108 0.65 2.71x 1010 0.317 38.6
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